
£ DR! Call Na_Hi22_
F3 *«** ** £-of-JL_cys.

li-**mm

ESD-TR-77-259, Vol. Ill MTR-3294, Vol. Ill

DESIGN AND ABSTRACT SPECIFICATION

OF A MULTICS SECURITY KERNEL

BY J. P. L. WOODWARD

MARCH 1978

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 522N
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-77-C-0001

A^AD63\T^

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

SiLyLX M
SYÜVIA R. MAYER
AcUing Chief, Techniques

Engineering Division
lnrtjues

WILLIAM R. PRICE, Capt, USAF
Techniques Engineering Division

STANLEY ftfDERESKA, Col, USAF
Director, Computer Systems Engrg.
Deputy for Command & Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-77-259, Vol. Ill

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitta)

DESIGN AND ABSTRACT SPECIFICATION
OF A MULTICS SECURITY KERNEL

5. TYPE OF REPORT ft PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MTR-3294, Vol. Ill
7. AUTHORf«;

J. P. L. Woodward

8. CONTRACT OR GRANT NUMBERfs)

F19628-77-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford, MA 01730

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUMBERS

Project No. 522N

11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
Hanscom Air Force Base. MA 01731

12. REPORT DATE

MARCH 1978
13. NUMBER OF PAGES

49
U. MONITORING AGENCY NAME ft ADDRESS^/ dilterant from Controlling Otfica) 15. SECURITY CLASS, (of thla report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide if necessary and Identify by block number)

COMPUTER SECURITY
FORMAL SOFTWARE SPECIFICATION
MULTICS
SECURITY KERNEL

20. ABSTRACT (Continue on reverae aide If necessary and Identify by block number)

On the basis of the recommendations of the Electronic Systems Division Computer
Security Technology Panel (1972), The MITRE Corporation developed techniques for
the design, implementation, and formal mathematical verification of a security
kernel: a hardware and software mechanism to control access to information within
a computer system.

(over)

DD ,5 FORM nAJ*
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)
m

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (continued)

This three-volume report describes the design of a security kernel for Honeywell
Information System's Multics computer system. This third volume gives a formal,
top-level specification of the secondary subsystems of the kernel, including the System
Security Officer, reconfiguration, and initialization. It is sufficiently detailed to
allow its security, compatibility, and efficiency to be determined.

The first volume gave a methodology and design overview,
with the primary subsystems of the kernel.

The second volume dealt

I
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS P *GE(When Data Entered)

ACKNOWLEDGMENT

This report has been prepared by The MITRE Corporation under
Project No. 522N. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

This report describes a design that has been evolving since
September 1974. A number of individuals have contributed, including
W. L. Schiller, who was responsible for the major part of the storage
management design; S.R. Ames, Jr., K.J. Biba, E.L. Burke, M. Gasser,
S.B. Lipner, and P. T. Withington of The MITRE Corporation; and
Lt. Col. R.R. Schell, Capt. W.R. Price, and Capt. P.A. Karger of
the U.S. Air Force. The design has also been influenced by discussions
with personnel from other Air Force contractors and subcontractors:
Honeywell Information Systems, the Computer Systems Research group
of M.I.T's Laboratory for Computer Science, and Stanford Research
Institute's Computer Science group.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I INTRODUCTION

SECTION II THE SYSTEM SECURITY OFFICER (SSO) INTERFACE

TRUSTED SUBJECTS
THE SSO INTERFACE DESIGN
COMPATIBILITY WITH THE CURRENT 1IULTICS
SPECIFICATION

SSO Types, Parameters, Constants, and Definitions
SSO V-function Macros
SSO V-functions
SSO OV-function
SSO O-functions
Design Considerations

SSO REVIEW

SECTION III RECONFIGURATION

THE CURRENT DESIGN

Major Hardware Modules
Hardware Module Connections
Memory Reconfiguration
Processor Reconfiguration
Bulk Store Reconfiguration

THE KERNEL DESIGN
COMPATIBILITY WITH THE CURRENT MULTICS
SPECIFICATION

Data Types, Parameters, and Constants
Reconfiguration V-functions
Memory Reconfiguration O-functions
Paging Device Reconfiguration O-functions
CPU Reconfiguration O-functions

Page

4

5

6

6
7
8
8

9
11
11
14
14
18

19

20

20

20
21
22
24
24

25
26
26

26
28
30
32
32

RECONFIGURATION REVIEW 35

SECTION IV

APPENDIX I

REFERENCES

TABLE OF CONTENTS (Concluded)

INITIALIZATION

THE CURRENT DESIGN
THE KERNEL DESIGN

V-function Initialization
Initialization Reconfiguration Functions
Lower Level Initialization

COMPATIBILITY WITH THE CURRENT MULTICS
SPECIFICATION

Initialization Parameters and Constants
Initialize_Top_Level O-function
Initialization Configuration O-functions

INITIALIZATION REVIEW

INDEX TO SPECIFICATIONS

36

36
37

38
38
38

39
39

39
41
45

45

47

48

LIST OF ILLUSTRATIONS

Figure Number Page

1 SSO Types, Parameters, Constants, and Definitions 10
2 SSO V-function Macros 12
3 SSO V-functions 13
4 SSO OV-function 15
5 SSO O-functions 16
6 Hardware Module Connections 23
7 Reconfiguration Data Types, Parameters, and Constants 27
8 Reconfiguration V-functions 29
9 Memory Reconfiguration O-functions 31

10 Paging Device Reconfiguration O-functions 33
11 CPU Reconfiguration O-functions 34
12 Initialization Parameters and Constants 40
13 Initialize_top_level O-function 42
14 Initialization Configuration O-functions 46

■Iffl'il I

SECTION I

INTRODUCTION

This report is Volume 3 of a three-volume report on the design of
a security kernel for Multics. This volume presents the top-level
specification of some of the secondary subsystems of some of the
liultics kernel. The design methodology is discussed in Volume 1 of
this report, and the details of the specification language used are
given in Volume 2.

Three secondary subsystems of the Multics kernel are discussed in
this volume. The functions presented in this paper are different from
those presented in Volume 2 because they are not intended for use by
normal liultics users.

The first subsection discussed is the System Security Officer
(SSO). The SSO is the direct interface between the kernel and a user
responsible for system security. The SSO interface is important
because it provides some functions that cannot be performed by normal
users because they do not follow all the security rules.

Next, hardware reconfiguration is discussed. The reconfiguration
functions provided are to be used only by system high processes and
allow the user to dynamically alter the hardware configuration of the
system. It is intended that the supervisor running on the kernel
restrict the use of these functions to the operator.

Finally, the initialization of the Multics kernel is discussed.
Initialization provides the kernel with an initial secure state that
will be maintained as secure by the kernel 0-functions.

Other security-related subsystems, such as the Salvager and the
Emergency Shutdown subsystems, are not discussed in this volume.

SECTION II

THE SYSTEM SECURITY OFFICER (SSO) INTERFACE

TRUSTED SUBJECTS

A secure computer system is not a closed system. External inputs
are required to complete and maintain security, A mechanism is
required to associate the computer system elements correctly with
their counterparts in the people/paper world. Unverified software
cannot be trusted to make these bindings.

All software on which the security of the computer system depends
must be verified to perform its required function correctly if the
system is to be certified. The kernel software, the software that
implements the reference monitor, represents part of the verified
software of the system. The remainder of the verified software
comprises the "trusted subjects": the active system entities that
perform the security-related binding of computer system elements to
the external environment.

There are two areas in the Multics system where trusted subjects
are needed. One area is initialization, which is treated in the last
section. The other area is the interface between the kernel and the
System Security Officer (SSO). This section describes the nature of
trusted subjects and the SSO Interface specification.

The verification technique requires that all software to be
certified have a top-level specification. Because of the distinctly
different duties of trusted subjects, however, the requirements of
their interface specification are unlike those of the kernel.

The arguments (external information) required by trusted subjects
are supplied by users who are trusted to perform correctly, or by
hardware. An example of a hardware-supplied argument is a unique
identifier of a terminal, supplied by the hardware of the terminal or
its controller. The trusted subject functions must be performed
completely by verified software, since security depends on their
correct operation. The trusted subject functions must interact
directly with the trusted users.

Since the users of trusted functions are themselves trusted, the
access control performed at the kernel interface is not required at
the trusted subject interface. Nevertheless, the requirement of
direct interaction with users implies that an additional mechanism
must be supplied to ensure trusted subject functions are only

available to trusted users. Since this mechanism is implementation
dependent, a narrative description is provided, rather than a
high-level specification.

THE SSO INTERFACE DESIGN

The most significant part of the design of the SSO interface, how
to ensure direct interaction with trusted software, cannot be speci-
fied. The enforcement of availability of the functions is an imple-
mentation dependent mechanism. One possible implementation is to
provide the SSO functions in a verified process invoked by the
power-on interrupt of a terminal. A verified process is required
since it must handle terminal communications completely. No uncerti-
fied software may be interposed between the SSO function and the SSO
— even for menial tasks like I/O — as It would then be possible to
spoof the SSO or the SSO function and cause a breach of security.

The process providing the interface functions must be protected
such that software may not invoke it. By implementing the process as
an interrupt service routine for the terminal power-on interrupt, it
can be ensured that only terminals and no software may execute the
process. Of course, only certain kinds of terminals, with the proper
hardware, may be used.

The SSO completes the computer security mechanism by providing
necessary external inputs and performing operations that cannot be
performed within the constraints of the kernel interface.

The functions required by the SSO that have been identified are:
a function to inform the kernel of current device access levels, a
function to remove quota from an upgraded directory, a function to
downgrade segments, and functions to allow the SSO to process logical
volume mount requests. The first function provides external informa-
tion to the kernel. The last two functions provide kernel information
to the outside environment, and external information to the kernel, as
explained below. The others perform needed functions that cannot be
performed under the restrictions of the kernel interface. The
requirements for verification of the functions and relaxation of secu-
rity controls imply that the functions must be performed by trusted
subjects.

The SSO must be able to Inform the kernel of device access levels
because the kernel has no way to ascertain this information by itself.
For example, when SECRET paper is mounted in a printer, the kernel
must be informed of the access level of the printer. The levels of
disk and tape drives must also be made known to the kernel.

Moving quota from an upgraded directory back to its parent is
reading information fron a higher level (the upgraded directory) and
writing it at a lower level (of the parent). Therefore, this function
violates the *-property and is not allowed at the kernel interface.
The SSO must perform this function, since the SSO is permitted to
violate the *-property in a controlled manner.

Downgrading segments is another function that violates some prop-
erties of the security model and hence cannot be performed at the
kernel interface. The SSO has a function to set the access level of
segments. This function is used to downgrade segments.

When a process calls the "Mount" function to mount a logical
volume, and that logical volume is not already mounted, "Mount" enters
a request to the SSO to mount the volume. The list of requests is a
first-in-first-out stack, so the SSO has a function to read the
earliest mount request. After he has read the request, the SSO mounts
the appropriate volume(s), and then uses other SSO functions to inform
the kernel that the logical volume is mounted for the requesting
process, and which drive(s) it is mounted on.

As with the kernel, a trusted subject has no way of guaranteeing
the identity of a user, so it must rely on its ability to identify
terminals and on physical security to ensure that only the SSO
executes the functions provided by the SSO trusted subjects.

COMPATIBILITY WITH THE CURRENT MULTICS

Most of the SSO functions have no analogue in the current Multics
since the security policy they are concerned with is not a part of the
current Multics. Compatibility is not a problem because all of the
SSO functions will have a restricted number of users.

SPECIFICATION

Whereas the security kernel is concerned with the process as the
specification representation of a subject, in the specification of the
trusted software, the terminal embodies the active subject. The
terminal acts as proxy for the user, since we lack the hardware capa-
bility to identify different users on a terminal.

Corresponding to the process control function "process", which
embodies all process information, the trusted subject module uses a
hardware-supplied argument "terminal" to determine if the user of the
function is using the SSO terminal. This hardware-supplied argument
appears in angle brackets (<>) in function argument lists.

8

The sections that follow provide descriptions of the SSO specifi-
cation itself, broken down by parts of the specification.

SSO Types, Parameters, Constants, and Definitions

Figure 1 illustrates the SSO type definitions, parameters,
constants, and definitions. There are three data types defined in the
specification. The first two are related to user-specified segment
pathnames, and the last is concerned with requests to mount logical
volumes.

The SSO is the only part of the kernel specification that identi-
fies segments by their pathname. The SSO interface is an interface to
a person, not a program, so it is more convenient and less error-prone
to identify segments by their pathname rather than their segment
number. The abstract form of a Multics pathname is defined by
"path_name__type". According to this definition, a pathname is a
vector of entrynames. Thus, "path_name_type" is the abstract data
type of a pathname as entered by a user.

Each entrynarae in a pathname (except the last one) is the name of
a directory (the parent directory) that contains information that
describes the next entryname. When entered by a user, a Multics path-
name begins with a ">M, which is shorthand for "root>". In our secure
Multics system, the root has a defining entry which is stored in the
root directory. Therefore, the parent directory of the root is the
root itself. Therefore, if we wish to precisely specify a Multics
pathname, we must start the pathname with nrootroot>". We need to
represent a pathname with this precision in the specification, so we
have another data type that describes this "full" pathname. This data
type is called "full_j>ath__name_type". In the rest of this document we
will refer to this latter type of pathname as a "full" pathname, and
to the pathname the user enters as a "regular" pathname.

The last type definition is of a mount request, which specifies
that the given process wants the given volume to be mounted.

The parameter "path_name" is the regular pathname of a segment.
Similarly, "full_path" is the full pathname of a segment. The param-
eter "terminal", as mentioned before, is the hardware-supplied uid of
the terminal calling the SSO function. The constant "max__path__length"
is the maximum number of entrynames allowed in a regular pathname, and
the constant "SSO" is the uid of the SSO terminal.

In the definition section, "path_name_length" is the number of
entries in a regular (user-supplied) pathname, "full_path_name" is a
full pathname (as created by the "Make_full__path_name" V-function

/* SSO type definitions */

type
path_name_type
f ul l_pa th_name_ty pe
mount_request_type =

(process: uid_type,
vol_id: uid_type)

vector(1 to max_path_length) of entry_type
- vector(1 to max_path_length+2) of entry_type
structure

/* SSO parameters */

parameter
path_name: path_name__type
full_path: full_path_name_type
terminal: uid_type

/* SSO constants */

constant
max_path_length: integer
SSO: uid_type

/* SSO definitions */

define
path_narae_length = cardinality{i | path_name[i] ^ "undefined"};
f ull_path_name = Make_full_path_name(path_name);
full_path_name_length = cardinality

<i | full_path_name[i] t "undefined"};
full_path__length = cardinality

{i | full_path[i] j "undefined"};
Branch_path = Directory

(Path_to_uid(Parent_path(full_path_name)),
f ull_path_name [f ull__path_name_length]);

Dir_branch_path = Directory
(Path_to_uid (Parent_path (Parent_path (f ull_path_name))),
f ull_path_name [full_path_name_length-l]);

Figure 1. SSO Types, Parameters, Constants, and Definitions

10

macro), and "full_path__name_length" is the number of entries in a full
pathname. The definitions "full_path_jiame" and
"full_path__name_length" are used only by O-functions and in defini-
tions used by O-functions.

The number of entries in a "full_path" is given by
"full_j>ath_length". Remember that "full_path" is a parameter to a
V-function, so "full_path_length" is used only by some V-functions
(those which are passed full pathnames).

The last two definitions are used only by O-functions or
V-f unctions with regular pathnames as arguments. ,lBranch__pathM is the
directory branch associated with a "path__name". "Dir_branch_bathlf is
the directory branch associated with the parent (directory) of a
Mpath_name".

SSO V-function Macros

The SSO V-function macros are given in Figure 2. All of these
V-function macros are associated with pathnames.

"Make__full_path__name" takes as its argument a regular pathname
and returns a full pathname. A full pathname is a regular pathname
with "root>root" concatenated at the beginning. This macro is used
only in the definition of "full_path_name".

The remaining three macros take full pathnames as arguments.
"Parent_path" returns the full pathname of the parent of the specified
full pathname. "Path_accessible" is a boolean-valued function that
tells whether the specified full pathname exists and can be accessed
by the SSO at its current access level. "Path_to_uid" converts the
given full pathname to the uid of the segment.

SSO V-functions

Figure 3 illustrates the SSO V-functions, both hidden and non-
hidden.

The hidden V-function nMount_request" is the list of mount
requests compiled by the "Mount" O-function and processed by the SSO
with the "Read_mount_request" OV-function.

The non-hidden V-function "SSO_access_level" represents the
current access level of the SSO and is derived from the access level
associated with the SSO terminal. The exception for this function
assures that the user is at the SSO terminal.

11

/* SSO V function macros */

V_f unction_macro Make_f ull_jDath_name(path_narae) : full_path__name_type

derivation
Make_full_j>ath_name[l] - "root";
tiake_full_path_name[2] = "root";
(V i 6 {1,2, ... path_name_length>)

(Make_f ull_path_name [i+2] ■ path_narae [i]);
(V i _> path_name_length+2)(Make_full_path_name[i] - "undefined");

V__function_macro Parent_path(full__path): f ull_path_name_type

derivation
if full__path_length = 0

then Parent_path = "undefined";
else (V i G <1, 2, ... , full_path_length-l})

(Parent_path[i] = full_path [i]);
(V i > full_path_length)(Parent_path[i] * "undefined");

end

V_functionjnacro Path_accessible(full_path): boolean

derivation
if full_path_length = 0

then Path_accessible = true;
else Path_accessible =

if Path_accessible(Parent_path(full__path))
then Entry_defined(Path_to_uid(Parent_path(full_path)),

full_path[full_path_length]) &
Dominates(Device(SSO)•access_level,

Directory(Path_to_uid(Parent_path(full_path)),
full_jpath [full__path_length]) .access__level);

end
end

V_function_macro Path_to_uid(full_path): uid_type

derivation
if full_path_length = 0

then Path_to_uid = root__uid;
else Path_to_uid = Directory (Path_to_uid(Parent_path(f ull_path)) ,

full_path[full_path_length]).uid;
end

Figure 2. SSO V-function Macros

12

/* SSO Hidden_V_function */

Hidden__VJE unction Mount__request(tirae): mount__request_type

/* SSO V-functlon */

V_function SSO_access_level(<terminal>): access_level__type

exception
"terminal - SSO;

derivation
Device (SSO). access__level;

Figure 3. SSO V-functions

13

SSO OV-function

The SSO has one OV-function, "Read__mount__request," as shown in
Figure 4. This function has as its value the earliest mount request,
and deletes that request from the list once it has been returned. The
exceptions check that the caller is at the SSO terminal, that the SSO
is executing at "system_high," and that there is a mount request to
return.

SSO O-functions

The SSO O-functions appear in Figure 5. These O-functions manip-
ulate kernel information but are trusted to do so securely; excep-
tions check the consistency of the arguments.

"Set_segment_al" is an SSO function used to declassify informa-
tion by changing the level of the segment that holds it. Although in
the people/paper world individuals are allowed to do a form of declas-
sifying by extracting paragraphs from documents, the analogous mecha-
nism cannot be supported here due to the granularity of the informa-
tion protection unit.

The exceptions insure: that the caller is at the SSO terminal;
that the segment specified is accessible by the SSO at its current
access level; that the segment specified is not the root; that the
new access level remains increasing as you move down the hierarchy;
that the segment is not a non-empty directory; and that segment does
have terminal quota.

The effect is simply to change the access level of the segment,
and to revoke any current access each process has to the segment.

"Set_device_al" is used by the SSO to inform the kernel of
changes in device usage. An example is changing of paper in a printer
to allow it to print information at a different security level; the
kernel must be given this external information by the SSO.

The exceptions check that the function is being invoked by the
SSO terminal, that the new access level is within the bounds allowed
for the device, and that no process is using the device.

This function can also be used to change the level of the SSO
terminal, since this terminal is considered a device in the specifica-
tion. The SSO terminal has a device_id of "SSO", so "Device(SSO)" is
the SSO terminal.

The "Remove_upgraded_quota" function is used by the SSO to remove
quota from an upgraded segment and return it to its parent. This

14

/* SSO OV-function */

OV_function Read_mount_request(<terminal>): mount_request_type

exception
"terminal = SSO;
Device(SSO).access_level ^ "systemjiigh";
Mount_request ■ "undefined";

effect
Mount_request(min{(itime)('Mount__request(itime)~-"undefined")>) *

"undefined";

derivation
'Mount_request(rain{(itime)('Mount_request(itime)"«"undefined")});

Figure 4. SSO OV-function

15

/* SSO O-functions */

0_function Set_segment_al(path_name, access_level, <terminal>)

exception
"terminal = SSO;
"Path_accessible(full_path_name);
Path_to_uid(full_path_name) = root_uid;
"Dominates(access_level, Dir_branch_path.access_level);
Branch_path.type = "directory" &

(Hentry) (Entry_def ined(Branch_path.uid,ientry);
Branch path.quota given <_ 0;

effect
Branch_path.access_level = access__level;
(Viprocess_id, iseg)
if 'Process(iprocess_id).KST(iseg).uid - Path_to_uid(full__path_name)

then Process(iprocess_id).KST(iseg) = "undefined";
end

0_function Set_device_al(device_id, access_level, <terminal>)

exception
"terminal = SSO;
"Dominates(Device(device__id).max_al, access_level);
"Dominates(access_level, Device(device__id).min_al);
"Dominates(Device(SSO).access__level, Device(device_id).access_level);
Device(device_id).owner ^ "undefined";

effect
Device(device_id).access_level=access_level;

Figure 5. SSO O-functions

16

0__function Remove_jupgraded_quota(path_name, quota, <terminal>)

exception
"terminal « SSO;
"Path_accessible(full_path__name);
Path_to_uid(full__path_name) - root_uid;
"quota > 0;
(Branch__path.type s "directory") &

(Dir_branch_path.sons_vol_id 4 Branch__path.sons_vol_id);
Branch_path.quota ■ 0;
Branch_path.quota - quota < Branch_path.quota_used;
Branch path.quota given - quota <_ 0;

effect
Branch path.quota given ■ 'Branch^ath.quota^iven - quota;
Branch_path.quota ■ 'Branch__path. quota - quota;
Dir_branch_path.quota - 'Dir_branch_path.quota + quota;

0__function Set_Drive(drive_no, vol_id, <terminal>)

exception
"terminal - SSO;
Device(SSO).access_level ^ "system_high";
(f iprocess)(Process(iprocess).mount_list(Drive(drive__no)));

effect
Drive(drive_no) ■ vol__id;

0_function Set_mount__list(process__id, vol__id, <terminal>)

exception
"terminal - SSO;
Device(SSO).access_level f "systemjhigh";
"Process(process_id) + "undefined";

effect
Process(process_id).mount__list (vol__id) * "true";

Figure 5. SSO O-functions (Concluded)

17

function cannot be provided at the kernel interface because it
violates the *-property. Although it would be reasonable to provide
this function to all users, in the interest of maintaining a simple
specification and implementation of trusted subjects only the SSO is
allowed to execute it.

In addition to checking that the SSO invoked the function, the
exceptions ensure: that the specified segment is accessible to the SSO
at its current access level; that the segment is not the root; that a
positive amount of quota is to be removed; that the segment is not a
master directory (quota cannot be removed from a master directory);
and that if the quota will remain non-zero it will cover the quota
used.

The effect of "Remove__upgraded_quota" is to reduce the quota and
the quota_given in the segment's parent by the specified amount, and
to increase the quota field of the segment's parent's parent.

The last two O-functions are used by the SSO in processing mount
requests. After the SSO has used the OV-function "Read__mount_request"
to find what process wants what logical volume mounted, he mounts the
appropriate disk(s). Once he has done the mounting, he uses the func-
tion "Set_drive" to tell the kernel what drive(s) the logical volume
is mounted on. He then uses the function "Set_nount_list" to notify
the requesting process that the volume has been mounted.

"Set_drive" has as arguments a drive number and a logical volume
id. The exceptions insure that the caller is the SSO and that there
is no process that currently has a volume mounted on the specified
drive. The effect is to save the name of the volume mounted on the
specified drive.

"Set_mount_list" has as arguments the name of the process that
want the volume mounted and the name of the volume. The exceptions
check that the caller is the SSO and that the specified process
exists. The effect is to set the mount list of the specified process
"true" for the specified volume.

Design Considerations

As has been noted, the users of the functions provided by this
interface are trusted to preserve the integrity of the system and,
therefore, none of the usual kernel access control checks are made.
These functions are not required to correspond to the mathematical
model of security because they represent an implementation requirement
that is not addressed by the model.

18

The existence of an SFEP to handle terminal I/O is not reflected
by the top-level specification of trusted subjects, since the trusted
subject specification describes the interface provided by the coopera-
tive effort of the SFEP and host. Trusted subjects will be imple-
mented as unified functions through appropriate communication between
the certified software on both machines. Since the software implemen-
ting trusted subjects, in both machines together, must be verified to
implement the single top-level specification given, it is inappro-
priate at the top level to attempt to specify separately the responsi-
bilities allocated to each machine.

SSO REVIEW

The SSO fulfills an important requirement: interfacing the secu-
rity kernel with the external environment. Because such a requirement
does not exist in the current Multics, the SSO interface does not
represent an incompatibility with current Multics. It is instead, an
addition to the functionality of the current Multics system.

19

SECTION III

RECONFIGURATION

A Multics system is made up of a number of different types of
hardware modules, such as CPUs, memory modules, and I/O modules.
These modules must be interconnected in a very precise manner, and
once connected, all the modules can be used in running Multics.
However, modules can be connected but not used in running Multics.
The operator is allowed to reconfigure the system by specifying which
of the connected modules should be used. One major use for reconfigu-
ration is to allow modules that need service to be removed from system
use without having to stop Ilultics.

This section deals with the reconfiguration of certain hardware
modules of the Ilultics computer system. In this section we review the
current Multics reconfiguration design. Next, we present the kernel
design and consider compatibility issues, and finally we give a
detailed specification of the reconfiguration top-level interface
functions.

THE CURRENT DESIGN

The current Multics reconfiguration design provides operator
functions to handle the reconfiguration of the major hardware modules.
Each of the modules will be identified and described. Then, the
permissable physical and logical connections of the modules will be
discussed, and the operator reconfiguration functions dealing with
each type of module will be described.

Major Hardware Modules

The hardware modules that are handled by reconfiguration are
described briefly below. A more detailed description is given in the
Multics Reconfiguration Program Logic Manual [1].

A processor, or CPU, is a major processing unit, and is one of
three types of modules called active modules. The other two types of
active modules, the IOM and the bulk store, are defined below.

An IOM is an input/output controller,
active modules.

It is another of the

20

A bulk store is the third kind of active module. It provides
auxiliary memory for paging, and is sometimes referred to as the
paging device.

A system controller is a non-active hardware module that inter-
faces an active module to the memory of the configuration. The system
controller also manages system interrupts and contains the system
calendar clock. The system controller is often referred to as the
controller. Since the system controller interfaces the active modules
to the memory and hence provides memory functions to its users, the
system controller is also often referred to as a memory. Since this
report was researched a new system controller was announced and is
being offered by Honeywell. This new controller, often referred to as
the "four megaword controller", is not considered in this report.

Hardware Module Connections

A port is a connection point for two hardware modules. A
controller port, or memory port, is a port on a system controller for
connection to an active module. A processor port, or CPU port, is a
port on a processor for connection to a system controller.

All active modules (CPU, IOM, bulk store) are connected to the
system via the system controllers. Each active module is connected to
every system controller at the same port.

In other words, if a given CPU is connected to port 1 on one
controller, then it must be connected to port 1 on the other control-
lers as well. This restriction is not due to hardware, but to soft-
ware convention. The relationships between connected memories and
CPUs are best described in terms of the notion of control.

A control processor is a processor that is allowed to change the
port control and interrupt masking values of a system controller. A
processor that can change these values has some degree of control over
the controller. Each system controller has one and only one control
processor, although a processor can be a control processor for more
than one system controller. There is a switch on each system
controller (the Execute Interrupt Mask Assignment, or EIMA, switch)
that defines the control processor for that controller.

A CPU is usually connected to several controllers, each of which
connect the CPU to some memory. The CPU uses a controller to access
the memory the controller interfaces. When a CPU needs some other
controller function, such as sending interrupts, there is, by software
convention, a specific controller that the CPU always uses. This
controller is called the control memory for the CPU. Each memory with
its EIMA switch selecting a particular CPU is potentially a control

21

memory for that CPU, but only one of these memories is actually chosen
as the control memory. Each CPU must have a control memory, and a
memory cannot be a control memory for more than one CPU. Therefore,
there must be at least as many memories in the configuration as there
are CPUs.

Figure 6 illustrates a Multics system with two processors and
three memories/system controllers, showing the control processors and
control memories. CPU A is connected to each memory on memory port 7,
and CPU B is connected on memory port 6. Memory A is connected to
each CPU on CPU port 0, Memory B on CPU port 1, and Memory C on CPU
port 2. The EIMA switch on memory A is set to port 7 and selects CPU
A as control processor. The EIMA switch on memory B is set to port 7
and also selects CPU A as control processor. The EIMA switch on
memory C is set to port 6 and selects CPU B as control processor. CPU
A is control processor for two memories, so each of these two memories
is a potential control memory. By convention, only one of these memo-
ries is used as control memory, and memory A has been chosen in this
example. CPU B is control processor for only one memory, so that
memory is control memory for CPU B.

Now that we have presented the relevant terminology, we can
describe the operator reconfiguration functions for memories, CPUs,
and bulk store.

Memory Reconfiguration

Memory Reconfiguration involves adding or deleting a system
controller (memory) from the current configuration. The names of all
the memories in the system must be specified during initialization,
but they are not necessarily configured at that time. The memories
that exist and are specified at initialization time may be added or
deleted after initialization using operator commands. At least one
memory must be configured at initialization time. This memory is
called the bootload memory.

The operator command for adding a memory specifies the name of
the memory to be added, and optionally specifies the name of a partic-
ular CPU to be the control processor for the new memory. The operator
is prompted to perform certain actions in the course of the execution
of this command.

The operator command for deleting a memory specifies the name of
the memory to be deleted. The bootload memory cannot be deleted. If
the memory deleted was the control memory for some CPU, the operator
will be requested to make switch settings on the memory that is to be
the new control memory for that CPU.

22

MEMORY/SYSTEM CONTROLIER

A

PORTS EIMA

01234567

MEMORY/SYSTEM CONTROLIZR

B

PORTS EIMA

01234567

MEMORY/SYSTEM CONTROLUER

C

PORTS
EIMA

/

01234567

PORTS

CPU/PROCESSOR

A

01234567

PORTS

CPU/PROCESSOR

B

Figure 6, Hardware Module Connections

Processor Reconfiguration

The Hultics system can run with more than one CPU, but when it is
initialized, only one CPU (called the bootload CPU) is running. Any
other CPU's desired must be added by using the reconfiguration func-
tions. Similarly, system shutdown occurs with only one CPU running,
so the processor reconfiguration functions are a regular part of
multiple-CPU system operation.

The operator function for adding a CPU specifies the name of the
CPU, the system controller port to which it is connected, and the name
of its control memory. Certain operator actions are necessary during
this command, and the operator is prompted to perform them.

The operator command for deleting a CPU specifies the name of the
CPU to be deleted. The operator is prompted to change some switches
on all memories that are controlled by the CPU being deleted.

Bulk Store Reconfiguration

A bulk store is used as a paging device in the Multics system.
Bulk store reconfiguration is different from other types of reconfigu-
rations in that it deals with bulk store records rather than with the
bulk store as a whole. There is only one bulk store in a system, and
the records of the bulk store each hold one page of memory. The
records are added or deleted from the current configuration by oper-
ator commands.

The operator command for adding bulk store records specifies the
first record to be added and the number of records to be added. The
command is allowed if the specified range of records exists in the
bulk store. Thus, it is legal to specify the addition of a record
that is already configured, making it easy to add a large block of
records without knowing exactly which records in the block are already
configured.

The operator command for deleting bulk store records specifies
the first record to be deleted and the number of records to be
deleted. For convenience, it is legal to call for deletion of records
that are already deleted. If all records in the paging device are
deleted, then the device may be disconnected from the system for
repairs.

It should be noted that paging device record deletion is also
done automatically by system software if it is determined that a
certain record is bad (i.e., causes read errors).

24

THE KERNEL DESIGN

The kernel provides reconfiguration O-functions that support all
the functions currently available to the operator to perform reconfig-
uration. Hardware reconfiguration must be performed by the kernel
because the hardware "belongs" to the kernel - the kernel uses" the
hardware to create objects available at the kernel interface. The
data manipulated by the kernel in performing reconfigurations has been
assigned an access level of "system_high," so only processes with
access levels of "system__high" may use the reconfiguration functions.

A major consideration in the design of the reconfiguration func-
tions is the handling of operator interactions. In the current
design, the operator is prompted to perform switch settings on
controllers and processors in the course of a reconfiguration. This
prompting of the operator is undesirable for two reasons. First,
since kernel functions are indivisible, prompting in the middle of a
function causes specification problems. Second, having the kernel
rely on an operator's actions to work properly is not reliable. The
procedure of performing a reconfiguration with operator actions is
error-prone. Therefore, in an effort to simplify the kernel and
provide for more error free operation, we have attempted to remove the
necessities of operator prompting.

The major cause of operator prompting and switch settings is the
Execute Interrupt Mask Assignment (EIMA) switch. As mentioned above,
this switch is used to specify the control processor for each
controller. Each controller has four EIMA switches, each of which may
be enabled by software. In the current design, only one of the
switches is enabled, so the setting on the enabled switch determines
the control processor for the controller. During some reconfigura-
tions, the setting of the switch must be changed to select a different
control processor.

An example of the need for changing an EIMA switch is the delete
CPU operator function. When a CPU that is the control processor for
some system controller is deleted, then the EIMA switch on that system
controller must be changed to specify some other CPU as a control
processor. In the current design, the operator is told which
controller to set the switch on, and what the switch setting should
be. Referring to our previous example shown in Figure 6, if CPU B is
deleted, the EIMA switch on memory C (which was controlled by CPU B),
must be changed to select port 7, and hence CPU A, as control proc-
essor.

The kernel design removes the requirement for operator prompting
and switch settings in two ways. First, a non-hidden V-function that
contains information about the current configuration is provided. The

25

information in this V-function can be used by the operating system to
prompt the operator before the reconfiguration O-function is called.
Second, a new convention for the use of EIMA switches is employed by
the kernel. Since there are four EIMA switches on each controller,
each switch can be set to select a different processor before the
system is initialized. The EIMA switch settings are the same for each
controller, i.e., if EIMA switch 1 on controller A selects processor
B, then EIMA switch 1 on all other controllers also selects processor
B. Once the switches are set on all controllers, and the kernel is
informed of the setting of the switches, the kernel can select a
control processor for each controller by enabling only the appropriate
EIMA switch in software. The kernel is informed at initialization
time of the EIMA switch settings. Only processors that have EIMA
switches selecting them may be configured, so this convention imposes
the restriction that only four CPUs may be configured.!

Since we have avoided operator interaction problems, the kernel
O-functions can perform the reconfigurations present in the current
design with no interruptions.

COMPATIBILITY WITH THE CURRENT MULTICS

Since reconfiguration functions are performed only by operators,
compatibility is not as great an issue as it is with more user
oriented subsystems. The reconfiguration functions provided by the
kernel roughly correspond to the operator functions provided in the
current design. The main incompatibilities are in the area of oper-
ator interaction, and have been discussed in the previous section.

SPECIFICATION

This section presents a detailed description of the V-functions
and O-functions that define the top-level specification of the kernel
reconfiguration design.

Data Types, Parameters, and Constants

Figure 7 shows the data types, parameters, and constants used in
the reconfiguration top-level specification.

There are five non-standard data types used in this specifica-
tion. Processor_port_number is the port number of a CPU port, to

^This restriction does not seem to be too great, since newer versions
of the Multics reconfiguration software impose this same restriction.

26

type
processor_port_number - integer (0 to max__processor__port);
memory_port_number - integer (0 to max_controller_port);
processor_index - integer(0 to max_processor__index);
EIMA__switch_number: integer (1 to 4);
control ler__data__type = structure

(exists: boolean /* true if memory exists */
configured: boolean /* true if mem currently configured */
abs_wired: boolean /* true if segment can contain abs_wired

segments and hence cannot be deconfigured */
control__processor: cpu_id /* control processor for this mem */
controlled_proc: cpu_id); /* processor for which this

controller is control memory; "undefined" if this
memory is not a control memory */

processor__data_type = structure
(configured: boolean /* true if cpu is currently configured */
control_memory: processor_port_number /* processor port

number of the control memory for this cpu. */
memory_port: memory_port_number /* this field tells to which

memory port the processor is attached. It is attached to
the same memory port on each system controller. */

EIMAjswitch: EIMA_switch_number); /* This field tells which
EIMA (if any) points to this cpu. */

parameter
controller: processor_portnumber:
record: integer (0 to 2

wo«r
T
Ien*"l-l);

count: integer (1 to 2
word-len8th-l);

cpu_id: processor__index;
mem__p o r t: nemo ry_p o r t_numb e r;
control_mem: processor_port_number;
control__proc: processor_index;

icpu: processor__index;
imem: processor_j>ort_number;

constant
max_processor_port: integer;
max_controller_port: integer;
nax_processor_index: integer;

Figure 7. Reconfiguration Data Types, Parameters, and Constants

27

which a system controller (memory) is attached. Memory__port_number is
the system controller (memory) port number to which a CPU, IOM, or
bulk store controller is attached, Processor_index is a name for a
CPU.

Controller__data__type is a structure that contains data about all
the possible controllers or memories in the system. Exists is true if
the memory exists, as specified at initialization time. Configured is
true if the memory is configured. Abs_wired is true if the memory
contains abs_wired segments.2 Control_processor specifies the control
CPU for this memory, and controlled_proc specifies the CPU for which

this is control memory.

Processor_data_type is a structure that contains data about all
the possible CPUs in the system. Configured is true if the CPU is
configured. Control_memory specifies the control memory for this CPU.
Memory__port specifies the memory port (on all memories) to which this
CPU is attached. EIMA_switch is undefined if this CPU is not speci-
fied on any EIIIA switches; otherwise, it is the number of the EIMA
switch on which the CPU is selected.

The parameter section defines the data types of the arguments
used in the specification. Controller is a processor_port_number, and
serves to identify a specific system controller (memory). Record and
count are used to specify a paging device record number and number of
records, respectively, for the paging device reconfiguration func-
tions. Cpu_id is a processor_index, and serves to identify a specific
CPU. Mem_port is a memory_port_nuraber for some CPU. Control_mera is
the processor_port_number of some control memory, and control__proc is
the name of some control processor. Icpu and imem are used as quanti-
fied variables in the specification.

The constant section lists certain constant arguments whose
actual value is irrelevant to the security of the top level. The
constants listed are the maximum number of processor ports, controller
ports, and CPU's, respectively.

Reconfiguration V-functions

Figure 8 contains the hidden and non-hidden V-functions in the
specification. The hidden V-functions, listed first, serve as data
bases internal to the kernel and not available at the kernel inter-
face. The first four hidden V-functions contain data about the major

-

2Abs_wired segments are segments that are permanently core resident.
If a memory contains any abs_wired segments then it cannot be deleted.
Normally only the bootload memory contains abs_wired segments.

28

Hidden_V__function Controller_data(controller): controller_data_type;

Hidden_V_function Processor_data(cpu__id): processor_data_type;

Hidden_V_function IOM_memory_port: raeraory_port_number;
/* This function tells to which memory port the IOM is attached.

It is attached to the same memory port on each controller */

Hidden_V__function Pd_size: integer; /* # of pages on paging device */
size of paging device */

Hidden__V_function Nprocessors: integer(l to max_processor__index+l);

Hidden__V_f unction Nmeraories: integer (1 to max__processor_port+l) ;

/* Interface (non-hidden, derived) V-function */

V_function Configuration: structure
(controllers(controller): controller_data_type
processors (cpu_id): processor__data_type);

exception
Cur.access_level ~» "systemjiigh";

derivation
controllers « Controller_data;
processors - Processor_data;

Figure 8. Reconfiguration V-functions

29

hardware modules. Controller_data contains data about all possible
system controllers (memories) in the system, as defined by
controller_data_type. Similarly, Processor_data contains data about
the CPUs in the system. IOM__memory_port is the memory (system
controller) port to which the IOM is attached. This value is set at
initialization time and does not change. Pd_size is the size, in
pages, of the paging device. This value is set at initialization time
and does not change.

The last two hidden V-functions, Nprocessors and Nmemories, are
counts of the number of CPUs and memories currently in the configura-
tion, respectively.

There is one non-hidden interface V-function in this specifica-
tion, which provides information about the current configuration for
use by uncertified software executing at the operator's request. This
V-function, called Configuration, is derived from Controller_data and
Processor_data.

Memory Reconfiguration O-functions

Figure 9 shows the functions Add_memory and Delete__memory.
Add_memory takes as arguments the name (processor_port_number) of the
controller (memory) to be added, and an argument to specify the CPU to
be used as control processor for this memory. The function requests
that the specified memory be added with the specified CPU as control
processor.

The exceptions for Add_memory make sure that the current access
level is "system_high", that the specified controller exists and is
not already configured, and that the control processor is configured.

The effects of the function include the following. Configured is
set for the specified memory. Abs_wired is set to false for the spec-
ified memory, because it will contain not abs_wired segments.
Control_processor is set from the specified second argument, and the
count of configured memories is incremented.

Delete memory takes two arguments also. The first argument is
the name of the memory (controller) to be deleted. The second argu-
ment is the name of another memory to be used as control memory for
any CPUs for which the deleted memory was a control memory. Each CPU
must have a control memory. The second argument can be left undefined
if this deleted memory was not a control memory. Uncertified software
can determine from the V-function Configuration controllers whether or
not the memory to be deleted was a control memory. If it was, the
second argument must be supplied.

30

•

/* Memory (system controller) Reconfiguration O-functions */

0_function Add_memory(controller, control_proc)

exception
Cur.access_level **■ "systerajhigh";
^Controller^data(controller).exists;
Controller_data(controller).configured;
~Processor_data(control__proc). configured;

effect
Controller__data(controller).configured ■ "true";
Controller_data(controller).abs_wired ■ "false";
Controller_data(controller).control__processor - control_proc;
Controller_data(controller).controlled__proc ■ "undefined";
Nmeraories ■ 'Nmemories + 1;

0_function Delete_memory(controller, control_mem)

let
controlled_proc ■ Controller__data(controller).controlled_proc;
control_memory - Processor_data(controlled_proc).control__memory;

exception
Cur.access_level ~» "systen__high";
Nmemories =* Nprocessors; /* Can't delete any more memories */
~Controller_data(controller).configured;
Controller_data(controller)•abs_wired;
controlled_j>roc ~« "undefined" &

(~Controller_data(control_mera).configured |
Controller_data(control_mem).controlled_proc~ss"undefined");

effect
Controller_data(controller).configured = "false";
Nmemories s 'Nmemories -1;
if controlled__proc ~« "undefined"

then control_memory s control_mem;
Controller_data(control_mem).controlled_proc ■

controlled_proc;
end;

Figure 9. Memory Reconfiguration O-functions

31

The exceptions for Delete_memory check that the current access
level is "systemjiigh," and that the number of memories configured is
not equal to the number of CPUs configured. If these counts are
equal, there will not be enough memories for control memories if a
memory is deleted. There must always be at least as many memories as
there are CPUs in the configuration.

The exceptions also check that the memory is not abs__wired.
Finally, if the control_mem argument is needed, then control_mem must
be configured and must not be a control memory already.

The effects of Delete__memory are as follows. The configured flag
is set to false for the indicated memory. The count of the number of
memories is decremented. If the deleted memory was controlling some
CPU, then control_mem (the second argument) is made the control memory
for that CPU.

Paging Device Reconfiguration O-functions

Figure 10 contains the two paging device (bulk store) reconfigu-
ration O-functions. As mentioned earlier, bulk store reconfiguration
deals with bulk store records rather than with the bulk store itself.

The two functions each take as arguments the number of the first
record to be added or deleted, and the number of records to be added
or deleted. The exceptions for both functions are the same: to check
that the current access level is Msystem_highn, and that the range of
records specified lies within the bulk store.

These functions have no visible effects at the interface level.
In other words, a call to these functions has no effect on the results
of any future calls, because it is legal to add already configured
records and to delete already deleted records. The only possible
top-level effect is on the speed of the system, but time is not
observable at the top level.

CPU Reconfiguration O-functions

Figure 11 contains the CPU reconfiguration O-functions, A.dd_cpu
and Delete_cpu.

Add_cpu requires three arguments: the name of the CPU to be
added, the control memory for that CPU, and the memory port to which
that CPU is attached. The exceptions for the function make sure that:
the current access level is "systemjiigh", the specified CPU is not
already configured, the specified control memory is configured and is
not already a control memory, and that the specified memory port is
not already being used for some processor or for the 1011.

32

/* Paging Device Record Reconfiguration O-functions */

0_function Add__pd__records (record, count)

exception
Cur.access__level ~« "system_highl,;
record+count-1 > Pd_size;

0__function Delete_j>d__records(record, count)

exception
Cur.access_level ~- "systetn_high";
record+count-1 > Pd_size;

Figure 10. Paging Device Reconfiguration O-functions

33

/* Processor (CPU) Reconfiguration O-functions */

0__function Add_cpu(cpu__id, control_mem, raem_port)

exception
Cur.access_level "*■ "system_high";
Processor_data(cpu_id).configured;
Processor_data(cpu_id).EIMA_switch ■ "undefined";
~Controller_data(control_raem).configured;
Controller_data(control_nera).controlled_proc ~s "undefined";
(3-icpu) (Processor__data(icpu).memory_port ■ mem_port);
IOM_memory_port * mem_port;

effect
Processor__data(cpu_id). configured = "true";
Processor_data(cpu_id).control_memory = control_raem;
Processor_data(cpu_id).memory_port - mera_port;
Controller_data(control_mem).controlled_proc ■ cpu_id;
Nprocessors ■ 'Nprocessors + 1;

0_function Delete_cpu(cpu_id, control_proc)

let
control_memory = Processor_data(cpu_id).control__meraory;

exception
Cur.access_level ~= "system_high";
Nprocessors ■ 1; /* can't delete last cpu */
~Processor_data(cpu_id).configured;
~Processor__data(control_proc). configured;

effect
Processor_data(cpu_id).configured = "false";
Nprocessors ■ 'Nprocessors -1;
Controller_data(control_memory),controlled__proc = "undefined";
(Vimem) if Controller_data(imem).control_processor ■ cpu_id
then Controller_data(imem).control_processor = control_proc;
end;

Figure 11. CPU Reconfiguration O-functions

34

The effects of Add_cpu are as follows. The configured flag is
set for the specified CPU, and the control_raeraory and memory_port
fields are filled in. Also, the controlled__proc field on the speci-
fied control memory is set to the CPU being added. Finally, the
number of processors configured is incremented.

The 0-function Delete_cpu takes two arguments. The first is the
name of the CPU to be deleted. The second argument is the name of
another CPU to be used as control processor for any memories for which
the deleted CPU was control processor. This argument can be "unde-
fined" if the deleted CPU was not a control processor.

The exceptions for Delete^cpu insure that: the current access
level is "system_high", there is more than one CPU configured, the
specified CPU is configured, and that if needed, the specified
control_proc is configured.

The effect of Delete_cpu is as follows. Configured is set to
false for the specified CPU. The number of processors is decremented.
The controlled_proc field for the memory that was controlling the CPU
is set to "undefined". Each memory that was controlled by the speci-
fied CPU is set to be controlled by control_proc.

RECONFIGURATION REVIEW

In this section we have described the kernel interface functions
dealing with the reconfiguration of the various hardware modules of
the Multics system. The current design of the hardware reconfigura-
tion operator functions has been described, and we have seen that the
kernel functions are basically compatible. The main area of incompat-
ibility, that of operator interaction during reconfigurations, has been
pointed out. We have also described the detailed specification of the
kernel functions for memory (system controller) reconfiguration,
paging device (bulk store) reconfiguration, and CPU (processor) recon-
figuration.

35

SECTION IV

INITIALIZATION

Initialization is the process through which Multics is loaded
into the computer and started running in its normal node. This
section discusses the problems involved with Multics system initiali-
zation. Initialization, very important to the security of the kernel,
puts the kernel into a secure state, and the kernel O-functions map
the kernel from one secure state into another. Once the system is in
a secure state, it will stay secure.

In this section we shall discuss briefly how initialization is
accomplished in the current Multics, then we will discuss initializa-
tion of the security kernel. Compatibility issues with the current
Multics will be considered, and the specifications dealing with
initialization will be presented.

THE CURRENT DESIGN

As it exists today, initialization of a Multics system is very
complex and is difficult to verify. The initialization process is not
well modularized and is extremely hard to understand and modify. The
complexity of the design and coding makes verification infeasible.

The information necessary to initialize the Multics system
resides in two places, the Multics System Tape (MST), and the CONFIG
deck. The MST contains the programs and data that must be loaded to
start Multics in any configuration, at any installation. The informa-
tion on the MST is installation independent. The CONFIG deck contains
the installation dependent data that is read by Multics to initialize
itself in a particular configuration.

To initialize the system, the operator issues commands to the
Bootload Operating System (BOS) [2]. At this time the operator speci-
fies whether this initialization is to be a warm start or a cold
start. A warm start (the most common), means the initial storage
hierarchy is to be the one present at the last system shutdown. A
cold start means the storage hierarchy is to be recreated.

At the command of the operator, BOS puts the CONFIG deck in a
fixed place in memory and starts reading the MST. The segments on the
MST are organized into three collections of data. Each collection,
when loaded, initializes itself to provide a richer environment for
the next collection to run in, and then reads in the next collection.

36

•

Through this reading and initializing of collections, the standard
ring 0 environment is eventually achieved. A more detailed descrip-
tion of the initialization procedure can be found in [3]•

One of the problems with this initialization scheme is that it is
never really clear what environment a given initialization program
runs in. The number of different environments makes verification
infeasible.

THE KERNEL DESIGN

The initialization of a kernel based Multics system is slightly
different from that of the current Multics system, and consists of two
parts: initialization of the kernel, and initialization of the rest of
the operating system. From the standpoint of security, we are
concerned only with the initialization of the kernel. Once the kernel
is securely initialized, the remainder of initialization may run with
unverified code.

The scenario for initialization of a kernel based Multics system
is as follows. First, the Bootload Operating System (BOS) will be
retained. It is not known at this time how much of BOS can remain
unverified, but it is certain that part of BOS must be verified,
specifically, the portion that handles the CONFIG deck and the portion
that loads the kernel tape.

To start initialization, BOS loads the kernel from a protected
tape^ and initializes the kernel. This loading, initialization, and
starting of the kernel may be accomplished in several ways. One might
be to save a core image of the kernel after it has initialized itself,
and simply load and start this (already initialized) core image. Once
loaded and started at the appropriate point, the kernel would then
proceed to load and initialize the rest of the operating system from
another tape, similar to the MST in the current design. From the
standpoint of security, we are mainly concerned with the loading and
initializing of the kernel. The operating system resides on two tapes
because one tape, which contains the kernel, must be protected and
handled with special procedures. The same restrictions do not apply
to the tape which contains the rest of the operating system.

The kernel representation will be placed on the protected tape so
that when loaded into core and started in a specific place it will be
secure. Thus, the kernel must be completely initialized before it is

^While tape is currently used as a storage medium for system software,
we do not imply the kernel storage medium is restricted to tape.

37

placed on the protected tape. Once loaded, the kernel will be config-
ured to the hardware using initialization configuration functions and
information from the CONFIG deck. The CONFIG deck in the kernel
design will be similar to the CONFIG deck in the current design, but
will be expanded to contain some security-sensitive information.
Processing the CONFIG deck and calling the initialization configura-
tion functions must be done by verified code.

To verify that the system is initialized securely, we must verify
that the kernel representation on the protected tape is correct. This
verification may be performed in two ways. First, we may inspect the
contents of the tape. This need be done only once for each copy of
the system. Second, we can generate the tape with verified software.
It is unclear which method is preferable.

V-function Initialization

Since the initial state of the kernel must be secure, we must
have some way to specify the initial secure state in terms of the
V-functions that define the kernel. We must therefore specify the
initial values of all non-derived V-functions.

Specifying the initial values of the V-functions will define, for
example, the initial hardware configuration and the initial state of
the system.

Initialization Reconfiguration Functions

The initial secure kernel, as loaded from the protected tape, is
a functional kernel, but will not reflect the hardware and software on
which the system is to run. We must provide O-functions to modify the
state of the kernel in a secure manner. The functions dealing with
the hardware are described in the section on reconfiguration. There
are other functions, however, that will be desirable.

Additional functions may be required to deal with changing the
size and/or number of kernel data bases and to assimilate the data
found on the CONFIG deck into the kernel configuration. Not all of
the desirable functions have been identified yet, but some are
included in the specification.

Lower Level Initialization

The functions shown in this specification are concerned only with
the initialization of top level V-functions. There is some informa-
tion that must be supplied at initialization time that is supplied to
lower levels of the kernel, such as physical device addresses. This
information is not treated in this specification.

38

COMPATIBILITY WITH THE CURRENT MULTICS

The kernel initialization scheme is not compatible with the
current scheme because only part of the total initialization process
will be verified. Multics initialization as a whole is different,
because of the existence of two system tapes, one protected, and one
not. Compatibility is not as much of an issue with initialization as
it is with other, more user-oriented subsystems. An incompatible
initialization interface effects only the operators, not the users.

The real compatibility issues, however, are concerned with the
generality and installation independence of the information on the two
tapes. The current MST is installation independent. The current
initialization process is unstructured and ad hoc. The new initiali-
zation technique provides more structuring, and provides a standard
(kernel) environment in which most of initialization can run. The
standard environment is achieved by binding together most (if not all)
of the kernel at the protected tape generation time, instead of at run
time. It is possible that pre-binding may cause a slight loss of
generality of the kernel tape, the extent of which is not known at
this time.

SPECIFICATION

We will now describe in detail the specification of the top level
of initialization. The initialization specification consists of
parameter and constant definitions, an 0-function to initialize the
V-functions in the top level, and some initialization configuration
0-functions.

The initialization O-functions are trusted functions (trusted
subjects), because the security of their operation depends on the
validity of their arguments. In other words, for secure operation,
the arguments must be specified correctly. This restriction should
not be a problem, however, because the arguments required by these
functions are supplied by users who are trusted to perform correctly.
The interface between these functions and their users is like the
interface described in the previous section on the SSO.

Initialization Parameters and Constants

Figure 12 shows the parameters and constants defined for initial-
ization. The first group of parameters defines the types of the
arguments to the 0-function "Initialize_top_level." The second group
of parameters defines the types of the arguments for the initializa-
tion configuration O-functions.

39

/* Initialization parameters */

parameter

cold_start: boolean;
IOM_port: memory_port_number;
bootload_cpu: processor_index;
bootload_cpu_memory_port: meraory_port_number;
bootload__memory: processor__port_number;
idevice_id: uid_type;
ientry: entry_type;
iprocess_id: uid_type;
iuid: uid_type;
paging_device_size: integer;

device_max_al, device_min_al, device_access_level: access_level_type;
vol_id: uid_type;
vol_access_level: access_level_type;
vol_//_of_packs, vol_quota: integer;

/* Initialization constants */

constant

SSO: uid_type;
initializer: uid_type;
initializer_process_data: process_type;
initial_interpreter_data: interpreter_data_type;
root_branch: branch_type;

Figure 12. Initialization Parameters and Constants

40

Five constants are defined for this specification. "SSO" is the
unique identification of the System Security Officer (SSO) terminal,
"initializer" is the unique ID of the initializer process, and
"initializer_process_data" is the initial data about the initializer
process. Data about the initial state of the interpreter is contained
in "initial__interpreter_data". The constant "root_branch" is the
branch that describes the root, and is stored in the root.

Initialize Top Level O-function

Figure 13 illustrates the O-function that initializes all non-de-
rived V-functions in the top level specification. Initializing the
non-derived V-functions also initializes the derived V-functions,
since they are derived from non-derived V-functions. The effect
section for this function lists the effects pertaining to each
subsystem in the specification. The arguments to Initialize__top_level
will be discussed along with the subsystem that uses them.

The effects pertaining to reconfiguration use the first nine
arguments. These arguments must be specified correctly for the system
to run correctly and for the reconfiguration functions to work
securely and correctly. "IOM__port" is the memory port number of the
IOM. "Bootload_CPU" is the processor index of the running CPU.
"Bootload_CPU_memory__port" is the memory port to which this CPU is
attached. "Bootload_memory" is the number of the processor port to
which the bootload memory is attached. "EIMA_switch_" 1 to 4 are the
processor indices of the CPUs selected by the four EIMA switches.
"Paging_device_size" is the number of records in the paging device.
The V-functions in the reconfiguration specification are initialized
to reflect the hardware base of the system as specified by these five
arguments.

"IOM_memory_port" saves the memory port number of the IOM for
future error checking. "Processor_data" is initialized to reflect the
current CPU configuration. Only the bootload CPU is configured. The
control memory for the bootload CPU is the bootload memory, as speci-
fied by the O-function argument. The memory port to which the boot-
load CPU is attached is set from "bootload_CPU_memory_port". The
"EIMA_switch" field for each processor is set to the number of the
EIMA switch selecting that processor. If no EIMA switch is selecting
the processor, then the "EIMA__switch" field is undefined.

"Controller__data" is set to reflect the initial set of memories.
During this phase of initialization, only the bootload memory is
considered to exist. The existence of other memories is made known
with the "Define_systen_controller" O-function (described below). The
bootload memory is configured and contains abs_wired segments. The

41

/* Initialization O-functions */

0_function Initialize_top_level (IOM_port, bootload_cpu,
bootload_cpu_memory_port, bootload_memory, EIMA_switch_l,
EIIIA_switch_2, EIMA_switch_3, EIMA_switch_4, paging_device_size,
cold_start)

effect

/* Reconfiguration Initialization effects */

I011_memory_port = IOM_port;
Processor_data(bootload_cpu).configured = "true";
Processor(bootload_cpu).control_memory = bootload_memory;
Processor_data(bootload_cpu).memory_j>ort = bootload_cpu_memory_port;
(Vicpu^bootload_cpu) Processor_data(icpu).configured - "false";
(Vicpu) if icpu=EIMA_switch_l then Processor_data(icpu),EIMA_switch=l;

else if icpu=EIMA_switch_2 then Processor_data(icpu).EIMA_switch-2;
else if icpu-EIMA_switch_3 then Processor_data(icpu).EIMA_switch=3;
else if icpu=EIMA_switch_4 then Processor_data(icpu).EIMA_switch=4;
else Processor_data(icpu).EIMAjswitch = "undefined";
end;

Controller_data(bootload_meraory).exists = "true";
Controller_data(bootload_memory).configured = "true";
Controller_data(bootload_memory).abs_wired = "true";
Controller_data(bootload_memory).controlled_proc = bootload_cpu;
Controller_data(bootload_memory).control_processor = bootload_cpu;
(Vimem^bootload_raeraory) Controller_data(imera).exists = "false";
Nprocessors = 1;
Nmemories = 1;
Pd_size = pacing devicesize;

/* Interpreter Initialization effects */

Interpreter_data = initial_interpreter_data;

/*,SSO Initialization effects */

Mount_request = "undefined";

Figure 13. Initialize_top_level O-function

42

/* External I/O initialization effects */

Device (SSO).max_al - "systera_high";
Device(SSO).min_al - "system_low";
Device(SSO).access_level - "system_high";
Device(SSO).owner - "undefined";
Device(SSO).status - "undefined";
Device(SSO).buffer - "undefined";
(Videvice__id 4 SSO) (Device (idevice_id) - "undefined");

/* Process control initialization effects */

Cur_j>rocess - initializer;
Process(initializer) ■ initializer_process_data;
(Viprocess_id 4 initializer)(Process(iprocess__id) ■ "undefined");

/* Common initialization effects */

Audit_log - "undefined";

/* Storage Control initialization effects */

Drive - "undefined";
if cold_start then

Directory(root_uid, "root") ■ root_branch;
(Vientry 4 "root")(Directory(root_uid, ientry) - "undefined");
(Viuid 4 root_uid) (Vientry)

(Directory(iuid, ientry) - "undefined");
LVRF =» "undefined";
end;

/* If this is a cold start, we must initialize with an empty tree,
otherwise, the tree is already there, having been initialized when
created. */

Figure 13. Initialize__top_level O-function (Concluded)

43

—

control processor for the bootload memory is the bootload CPU, and the
CPU controlled by the bootload memory is the bootload CPU.

The remainder of reconfiguration initialization sets the current
number of processors to one, the current number of memories to one,
and the size of the paging device to "paging_device_size".

The initialization of the interpreter involves setting the
initial value of "Interpreter_data" to . "initial_interpreter_data."

The SSO is initialized by setting the list of mount requests to
"undefined."

The initialization of external I/O defines the initial device
configuration. "Device" contains information about one terminal, the
SSO terminal. Information about other terminals is not stored in
"Device", because they are considered SFEP devices, whereas the SSO
terminal is considered a kernel device. The access level in the SSO
terminal is system high. The SSO is the only device defined at
initialization time. Other devices are defined using the
"Define_device" configuration function described below.

Whether or not Multics needs separate operator's and SSO termi-
nals is still an open question.

The initialization of process control defines the initial
process, the initializer process. There are no other processes
defined initially.

Initialization of the common V-functions is completed by setting
"audit_log" to undefined.

The initialization of storage control starts by setting the
information about the mounted volumes ("Drive") to "undefined". The
remainder of storage control initialization depends on whether or not
this is a cold start, as indicated by the argument "cold__start". If
this is not a cold start, then the segment hierarchy and the Logical
Volume Record File (LVRF) are assumed to be unchanged since the last
shutdown, i.e., the storage system is intact on disk.

If this is a cold start, however, no hierarchy exists on disk,
and a new one must be created by the kernel and the (unspecified)
restore subsystem (which is trusted). For a cold start, the root is
created with only one entry, which is a description of the root
itself. No other segments or directories exist. They are created by
the restore subsystem from a previously created backup. Also, the
LVRF is set to undefined. Entries in the LVRF are defined by the
"DefineJLVRF" configuration function. Note that entries in the LVRF

44

cannot be removed. The LVRF can shrink in size only as the result of
a cold start«

Initialization Configuration O-functions

Figure 14 illustrates configuration O-functions that are used for
initialization. It is expected that most of these functions will not
be called directly as the result of an operator command, but will be
called by the verified software processing the CONFIG deck. For
example, one of the initialization configuration functions already
mentioned is "Define_systera_controller". This function is called by
verified software that is processing the CONFIG deck, to specify which
system controllers exists, even though they may not yet be configured.
The exceptions for all of these functions check that they are being
called by the SSO terminal with a "system_high" access level.

The 0-function "Define_device" provides a way to define what
devices are available. An exception for this function checks that the
maximum access level being assigned the device dominates the minimum
for the device. The effect of this function is to set the minimum and
maximum access levels for the device. The current "access_level",
"owner", "status", and "buffer" of the device are set to "undefined".

"Define_LVRF" is used to specify an entry in the Logical Volume
Record File (LVRF), which defines the logical volumes in the system.
The effect of the function is to mark that the specified LVRF entry
exists, but that the volume is not mounted. Also, the access level,
number of packs, and quota of the logical volume are set.

The 0-function "Define_system_controller" is used to make the
existence of a system controller known to the system. System control-
lers not made known at initialization time cannot be configured later.
The effect is to mark that the controller exists, but is not config-
ured. The controller can eventually be configured using the hardware
reconfiguration functions.

INITIALIZATION REVIEW

We have described, in this section, how Multics is currently
initialized, and how the initialization process must be reorganized to
accommodate a kernel based Multics system. The security kernel must
be securely initialized, but the rest of initialization can be
performed by unverified code. The V-functions that comprise the top-
level specification are initialized by the O-function
Initialize_top_level. Once the kernel is initialized, it is installa-
tion independent and must be reconfigured to the hardware using the
initialization configuration functions.

45

/* Initialization Configuration O-functions */

0__function Define_device(device_id, device_max_al, device_min_al,
<terminal>)

exception
terminal ^ SSO;
Device(SSO).access_level $ "system_high";
"Dominates(device_max_al,device_min_al);

effect
Device(device_id).nax_al ■ device__raax_al;
Device(device_id).min_al - device__min_al;
Device(device_id).access_level = device_min_al;
Device(device_id).owner = "undefined";
Device(device_id).status ■ "undefined";
Device (device__id).buf f er = "undefined";

0_function Define_LVRF (vol_id, vol_access_level,
vol_quota, <terminal>);

exception
terminal ± SSO;
Device(SSO).access_level ± "system_high";
LV_def ined(vol__id);

effect
LVRF(vol_id).mounted = "false";
LVRF(vol_id).access_level = vol_access_level;
LVRF(vol_id).quota ■ vol_quota;

0__function Define_system_controller(controller, <terminal>)

exception
terminal t SSO;
Device(SSO),access_level ^ "system_high";

effect
Controller_data(controller).exists = "true";
Controller_data(controller).configured ■ "false";

Figure 14. Initialization Configuration O-functions

46

APPENDIX I

INDEX TO SPECIFICATIONS

Functions

Add_cpu 34
Add__memory 31
Add_pd__records 33
Branch_path 10
Configuration 29
Controller__data 29
Define_LVRF 46
Define__device 46
Define_system__controller 46
Delete_cpu 34
Delete_memory 31
De le t e_p d_re co rds 33
Dir_branch__path 10
EIMA_switch_number 27
I0Mjnemory__port 29
IOMjport 40
Initialize_top_level 42
Make__full__path_name 12
Mount_request 13
Nmemories 29
Nprocessors 29
Parent__path 12
Path_accessible 12
Path__to uid 12
Pd_size 29
Processor__data 29
Read__mount_request 15
Remove_upgraded__quota 17
SS0_access__level 13
SetJDrive 17
Set__device_al 16
Set_mount_list 17
Set_segment_al 16

Basic Definitions

bootload_cpu 40
bootload_cpu__memory__port 40
bootload_memory 40

cold__start 40
control__mem 27
control_j>roc 27
controller 27
controller_data__type 27
count 27
cpu_id 27
device__access__level 40
device_max_al 40
device_min__al 40
full__path 10
full_path_length 10
full__path_jiame 10
full_path_name_length 10
full_path_name_type 10
icpu 27
idevice_id 40
ientry 40
imem 27
iprocess_id 40
iuid 40 "
max__controller__port 27
max_processor__index 2 7
max_processor_port 27
mem_port 27
memory_port__number 27
mount_request__type 10
paging_device_jsize 40
path_name 10
path_name_length 10
path_name__type 10
processorjdata__type 27
processor__index 27
processor_port_number 27
record 27
terminal 10
vol__#__pf__packs 40
vol__access_level 40
vol__id 40 "
vol__quota 40

47

REFERENCES

1. Honeywell Information Systems, Reconfiguration Program Logic
Manual, AN71, June 1974.

2. Honeywell Information Systems, Bootload Operating System (BOS)
Program Logic Manual, AN74.

3. Honeywell Information Systems, System Initialization Program
Logic Manual, AN70, February 1975.

48

